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 To motivate the Bloom-filter idea, consider a 
web crawler. 

 It keeps, centrally, a list of all the URL’s it has 
found so far. 

 It assigns these URL’s to any of a number of 
parallel tasks; these tasks stream back the URL’s 
they find in the links they discover on a page. 

 It needs to filter out those URL’s it has seen 
before. 
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 A Bloom filter placed on the stream of URL’s will 
declare that certain URL’s have been seen 
before. 

 Others will be declared new, and will be added 
to the list of URL’s that need to be crawled. 

 Unfortunately, the Bloom filter can have false 
positives. 

 It can declare a URL has been seen before when it 
hasn’t. 

 But if it says “never seen,” then it is truly new. 
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 A Bloom filter is an array of bits, together with a 
number of hash functions. 

 The argument of each hash function is a stream 
element, and it returns a position in the array. 

 Initially, all bits are 0. 
 When input x arrives, we set to 1 the bits h(x), 

for each hash function h. 
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 Use N = 11 bits for our filter. 
 Stream elements = integers. 
 Use two hash functions: 

 h1(x) = 

 Take odd-numbered bits from the right in the binary 
representation of x. 

 Treat it as an integer i. 

 Result is i modulo 11. 

 h2(x) = same, but take even-numbered bits. 
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Stream 
element 

h1 h2 
Filter contents 

  25 = 11001                   5                2                          00100100000 

00000000000 

159 = 10011111            7                0                          10100101000 

585 = 1001001001     9                7                          10100101010 



 Suppose element y appears in the stream, and 
we want to know if we have seen y before. 

 Compute h(y) for each hash function y. 
 If all the resulting bit positions are 1, say we 

have seen y before. 
 If at least one of these positions is 0, say we 

have not seen y before. 
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 Suppose we have the same Bloom filter as 
before, and we have set the filter to 
10100101010. 

 Lookup element y = 118 = 1110110 (binary). 
 h1(y) = 14 modulo 11 = 3. 
 h2(y) = 5 modulo 11 = 5. 
 Bit 5 is 1, but bit 3 is 0, so we are sure y is not in 

the set. 
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 Probability of a false positive depends on the 
density of 1’s in the array and the number of 
hash functions. 

 = (fraction of 1’s)# of hash functions. 

 The number of 1’s is approximately the number 
of elements inserted times the number of hash 
functions. 

 But collisions lower that number slightly. 
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 Turning random bits from 0 to 1 is like throwing 
d darts at t targets, at random. 

 How many targets are hit by at least one dart? 
 Probability a given target is hit by a given dart = 

1/t. 
 Probability none of d darts hit a given target is 

(1-1/t)d. 
 Rewrite as (1-1/t)t(d/t) ~= e-d/t. 

10 



 Suppose we use an array of 1 billion bits, 5 hash 
functions, and we insert 100 million elements. 

 That is, t = 109, and d = 5*108. 
 The fraction of 0’s that remain will be e-1/2 = 

0.607. 
 Density of 1’s = 0.393. 
 Probability of a false positive = (0.393)5 = 

0.00937. 
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 Suppose Google would like to examine its 
stream of search queries for the past month to 
find out what fraction of them were unique – 
asked only once. 

 But to save time, we are only going to sample 
1/10th of the stream. 

 The fraction of unique queries in the sample != 
the fraction for the stream as a whole. 

 In fact, we can’t even adjust the sample’s fraction to 
give the correct answer. 
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 The length of the sample is 10% of the length of 
the whole stream. 

 Suppose a query is unique. 

 It has a 10% chance of being in the sample. 

 Suppose a query occurs exactly twice in the 
stream. 

 It has an 18% chance of appearing exactly once in 
the sample. 

 And so on …  The fraction of unique queries in 
the stream is unpredictably large. 
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 Our mistake: we sampled based on the 
position in the stream, rather than the value 
of the stream element. 

 The right way: hash search queries to 10 
buckets 0, 1,…, 9. 

 Sample = all search queries that hash to 
bucket 0. 

 All or none of the instances of a query are selected. 

 Therefore the fraction of unique queries in the 
sample is the same as for the stream as a whole. 
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 Problem: What if the total sample size is 
limited? 

 Solution: Hash to a large number of buckets. 
 Adjust the set of buckets accepted for the 

sample, so your sample size stays within 
bounds. 

16 



 Suppose we start our search-query sample at 
10%, but we want to limit the size. 

 Hash to, say, 100 buckets, 0, 1,…, 99. 

 Take for the sample those elements hashing to 
buckets 0 through 9. 

 If the sample gets too big, get rid of bucket 9. 
 Still too big, get rid of 8, and so on. 
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 This technique generalizes to any form of data 
that we can see as tuples (K, V), where K is the 
“key” and V is a “value.” 

 Distinction: We want our sample to be based on 
picking some set of keys only, not pairs. 

 In the search-query example, the data was “all key.” 

 Hash keys to some number of buckets. 
 Sample consists of all key-value pairs with a key 

that goes into one of the selected buckets. 
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 Data = tuples of the form (EmpID, Dept, Salary). 
 Query: What is the average range of salaries 

within a department? 
 Key = Dept. 
 Value = (EmpID, Salary). 
 Sample picks some departments, has salaries 

for all employees of that department, including 
its min and max salaries. 
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 Problem: a data stream consists of elements 
chosen from a set of size n.  Maintain a count 
of the number of distinct elements seen so far. 

 Obvious approach: maintain the set of 
elements seen. 
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 How many different words are found among 
the Web pages being crawled at a site? 

 Unusually low or high numbers could indicate 
artificial pages (spam?). 

 How many unique users visited Facebook this 
month? 

 How many different pages link to each of the 
pages we have crawled. 

 Useful for estimating the PageRank of these pages. 
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 Real Problem: what if we do not have space to 
store the complete set? 

 Estimate the count in an unbiased way. 
 Accept that the count may be in error, but limit 

the probability that the error is large. 



24 

 Pick a hash function h that maps each of the n 
elements to at least log2n bits. 

 For each stream element a, let r(a) be the 
number of trailing 0’s in h(a). 

 Record R = the maximum r(a) seen. 
 Estimate = 2R. 
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 The probability that a given h(a) ends in at 
least i 0’s is 2-i. 

 If there are m different elements, the 
probability that R ≥ i is 1 – (1 - 2-i)m. 

Prob. a given h(a) 
ends in fewer than 
i  0’s. 

Prob. all h(a)’s 
end in fewer than 
i  0’s. 
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 Since 2-i is small, 1 - (1-2-i)m ≈ 1 - e-m2   . 
 If 2i >> m, 1 - e-m2  ≈ 1 - (1 - m2-i) ≈ m/2i ≈ 0. 
 If 2i << m, 1 - e-m2   ≈ 1. 

 Thus, 2R will almost always be around m. 

-i 

First 2 terms of the 
Taylor expansion of e x 

-i 

-i 
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 E(2R) is, in principle, infinite. 

 Probability halves when R -> R+1, but value 
doubles.  

 Workaround involves using many hash 
functions and getting many samples. 

 How are samples combined? 

 Average? What if one very large value? 

 Median? All values are a power of 2. 
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 Partition your samples into small groups. 

 O(log n), where n = size of universal set, suffices. 

 Take the average within each group. 
 Then take the median of the averages. 
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 Suppose a stream has elements chosen from a 
set of n values. 

 Let mi be the number of times value i occurs. 
 The kth moment is the sum of (mi)

k over all i. 
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 0th moment = number of different elements in 
the stream. 

 The problem just considered. 

 1st moment = count of the numbers of 
elements = length of the stream. 

 Easy to compute. 

 2nd moment = surprise number = a measure of 
how uneven the distribution is. 
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 Stream of length 100; 11 values appear. 
 Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9.  

Surprise # = 910. 
 Surprising: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1.  Surprise 

# = 8,110. 
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 Works for all moments; gives an unbiased 
estimate. 

 We’ll just concentrate on 2nd moment. 
 Based on calculation of many random variables 

X. 

 Each requires a count in main memory, so number is 
limited. 
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 Assume stream has length n. 
 Pick a random time to start, so that any time is 

equally likely. 
 Let the chosen time have element a in the 

stream. 
 X = n * ((twice the number of a’s in the stream 

starting at the chosen time) – 1). 

 Note: store n once, count of a’s for each X. 
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 2nd moment is Σa(ma)2. 

 E(X ) = (1/n)(Σall times t n * (twice the number 

of times the stream element at time t  

appears from that time on) – 1). 
 = Σa (1/n)(n)(1+3+5+…+2ma-1) . 
 = Σa (ma)2. 

Time when 
the last a 
is seen 

Time when 
penultimate 
 a is seen 

Time when 
the first a 
is seen Group times 

by the value 
seen 
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 We assumed there was a number n, the 
number of positions in the stream. 

 But real streams go on forever, so n changes; it 
is the number of inputs seen so far. 
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1. The variables X have n as a factor – keep n 
separately; just hold the count in X. 

2. Suppose we can only store k counts.  We 
cannot have one random variable X for each 
start-time, and must throw out some start-
times as we read the stream. 

 Objective: each starting time t is selected with 
probability k/n. 



37 

 Choose the first k times for k variables. 
 When the nth element arrives (n > k), choose it 

with probability k/n. 
 If you choose it, throw one of the previously 

stored variables out, with equal probability. 
 Probability of each of the first n-1 positions 

being chosen: 
    (n-k)/n * k/(n-1) + k/n * k/(n-1) * (k-1)/k = k/n 

n-th position 
not chosen 

Previously 
chosen 

n-th position 
chosen 

Previously 
chosen 

Survives 


