More Stream Mining

Bloom Filters
Sampling Streams
Counting Distinct Items
Computing Moments
Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman

Filtering Stream Content

- To motivate the Bloom-filter idea, consider a web crawler.
- It keeps, centrally, a list of all the URL's it has found so far.
- It assigns these URL's to any of a number of parallel tasks; these tasks stream back the URL's they find in the links they discover on a page.
- It needs to filter out those URL's it has seen before.

Role of the Bloom Filter

- A Bloom filter placed on the stream of URL's will declare that certain URL's have been seen before.
- Others will be declared new, and will be added to the list of URL's that need to be crawled.
- Unfortunately, the Bloom filter can have false positives.
- It can declare a URL has been seen before when it hasn't.
- But if it says "never seen," then it is truly new.

How a Bloom Filter Works

- A Bloom filter is an array of bits, together with a number of hash functions.
- The argument of each hash function is a stream element, and it returns a position in the array.
- Initially, all bits are 0.
- When input x arrives, we set to 1 the bits h(x), for each hash function h.

Example: Bloom Filter

- Use N = 11 bits for our filter.
- Stream elements = integers.
- Use two hash functions:
- $h_{1}(x)=$
- Take odd-numbered bits from the right in the binary representation of x.
- Treat it as an integer i.
- Result is i modulo 11.
- $h_{2}(x)=$ same, but take even-numbered bits.

Example - Continued

Stream element
$h_{1} \quad h_{2}$
Filter contents
00000000000

00100100000

10100101000
$585=10010010019$
7
10100101010

Bloom Filter Lookup

- Suppose element y appears in the stream, and we want to know if we have seen y before.
- Compute $h(y)$ for each hash function y.
- If all the resulting bit positions are 1, say we have seen y before.
- If at least one of these positions is 0 , say we have not seen y before.

Example: Lookup

- Suppose we have the same Bloom filter as before, and we have set the filter to 10100101010.
- Lookup element $y=118=1110110$ (binary).
- $h_{1}(y)=14$ modulo $11=3$.
- $h_{2}(y)=5$ modulo $11=5$.
- Bit 5 is 1 , but bit 3 is 0 , so we are sure y is not in the set.

Performance of Bloom Filters

- Probability of a false positive depends on the density of 1's in the array and the number of hash functions.
- = (fraction of 1's) \# of hash functions.
- The number of 1's is approximately the number of elements inserted times the number of hash functions.
- But collisions lower that number slightly.

Throwing Darts

- Turning random bits from 0 to 1 is like throwing d darts at t targets, at random.
- How many targets are hit by at least one dart?
- Probability a given target is hit by a given dart = 1/t.
- Probability none of d darts hit a given target is $(1-1 / \mathrm{t})^{\mathrm{d}}$.
- Rewrite as $(1-1 / t)^{t(d / t)} \sim=e^{-d / t}$.

Example: Throwing Darts

- Suppose we use an array of 1 billion bits, 5 hash functions, and we insert 100 million elements.
- That is, $\mathrm{t}=10^{9}$, and $\mathrm{d}=5^{*} 10^{8}$.
- The fraction of 0 's that remain will be $e^{-1 / 2}=$ 0.607.
- Density of 1's = 0.393.
- Probability of a false positive $=(0.393)^{5}=$ 0.00937.

Sampling a Stream

What Doesn't Work
Sampling Based on Hash Values

When Sampling Doesn't Work

- Suppose Google would like to examine its stream of search queries for the past month to find out what fraction of them were unique asked only once.
- But to save time, we are only going to sample $1 / 10^{\text {th }}$ of the stream.
- The fraction of unique queries in the sample != the fraction for the stream as a whole.
- In fact, we can't even adjust the sample's fraction to give the correct answer.

Example: Unique Search Queries

- The length of the sample is 10% of the length of the whole stream.
- Suppose a query is unique.
- It has a 10% chance of being in the sample.
- Suppose a query occurs exactly twice in the stream.
- It has an 18% chance of appearing exactly once in the sample.
- And so on ... The fraction of unique queries in the stream is unpredictably large.

Sampling by Value

- Our mistake: we sampled based on the position in the stream, rather than the value of the stream element.
- The right way: hash search queries to 10 buckets 0, 1,..., 9 .
- Sample = all search queries that hash to bucket 0 .
- All or none of the instances of a query are selected.
- Therefore the fraction of unique queries in the sample is the same as for the stream as a whole.

Controlling the Sample Size

- Problem: What if the total sample size is limited?
- Solution: Hash to a large number of buckets.
- Adjust the set of buckets accepted for the sample, so your sample size stays within bounds.

Example: Fixed Sample Size

- Suppose we start our search-query sample at 10%, but we want to limit the size.
- Hash to, say, 100 buckets, 0, 1,..., 99.
- Take for the sample those elements hashing to buckets 0 through 9.
- If the sample gets too big, get rid of bucket 9 .
- Still too big, get rid of 8, and so on.

Sampling Key-Value Pairs

- This technique generalizes to any form of data that we can see as tuples (K, V), where K is the "key" and V is a "value."
- Distinction: We want our sample to be based on picking some set of keys only, not pairs.
- In the search-query example, the data was "all key."
- Hash keys to some number of buckets.
- Sample consists of all key-value pairs with a key that goes into one of the selected buckets.

Example: Salary Ranges

- Data = tuples of the form (EmpID, Dept, Salary).
- Query: What is the average range of salaries within a department?
- Key = Dept.
- Value = (EmpID, Salary).
- Sample picks some departments, has salaries for all employees of that department, including its min and max salaries.

Counting Distinct Elements

Applications
Flajolet-Martin Approximation Technique Generalization to Moments

Counting Distinct Elements

- Problem: a data stream consists of elements chosen from a set of size n. Maintain a count of the number of distinct elements seen so far.
- Obvious approach: maintain the set of elements seen.

Applications

- How many different words are found among the Web pages being crawled at a site?
- Unusually low or high numbers could indicate artificial pages (spam?).
- How many unique users visited Facebook this month?
- How many different pages link to each of the pages we have crawled.
- Useful for estimating the PageRank of these pages.

Estimating Counts

- Real Problem: what if we do not have space to store the complete set?
- Estimate the count in an unbiased way.
- Accept that the count may be in error, but limit the probability that the error is large.

Flajolet-Martin Approach

- Pick a hash function h that maps each of the n elements to at least $\log _{2} n$ bits.
- For each stream element a, let $r(a)$ be the number of trailing 0 's in $h(a)$.
- Record $R=$ the maximum $r(a)$ seen.
- Estimate $=2^{R}$.

Why It Works

- The probability that a given $h(a)$ ends in at least $i 0^{\prime}$ s is 2^{-i}.
- If there are m different elements, the probability that $R \geq i$ is $1-\left(1-2^{-i}\right)^{m}$.

Prob. all $h(a)^{\prime} s$	Prob. a given $h(a)$
end in fewer than	ends in fewer than
i o's.	i o's.

Why It Works - (2)

- Since 2^{-i} is small, $1-\left(1-2^{-i}\right)^{m} \approx 1-e^{-m 2^{-i}}$.
- If $2^{i} \gg m, 1-e^{-m 2^{-i}} \approx 1-\left(1-m 2^{-i}\right) \approx m / 2^{i} \approx 0$.
- If $2^{i} \ll m, 1-e^{-m 2^{-i}} \approx 1$.

Thus, 2^{R} will almost always be around m.

First 2 terms of the
Taylor expansion of e^{x}

Why It Doesn't Work

- $\mathrm{E}\left(2^{R}\right)$ is, in principle, infinite.
- Probability halves when R-> $R+1$, but value doubles.
- Workaround involves using many hash functions and getting many samples.
- How are samples combined?
- Average? What if one very large value?
- Median? All values are a power of 2.

Solution

- Partition your samples into small groups.
- O(log n), where $n=$ size of universal set, suffices.
- Take the average within each group.
- Then take the median of the averages.

Generalization: Moments

- Suppose a stream has elements chosen from a set of n values.
- Let m_{i} be the number of times value i occurs.
- The $k^{\text {th }}$ moment is the sum of $\left(m_{i}\right)^{k}$ over all i.

Special Cases

- $0^{\text {th }}$ moment $=$ number of different elements in the stream.
- The problem just considered.
- $1^{\text {st }}$ moment $=$ count of the numbers of elements = length of the stream.
- Easy to compute.
- $2^{\text {nd }}$ moment $=$ surprise number $=$ a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100; 11 values appear.
- Unsurprising: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9.

Surprise \# = 910.

- Surprising: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1. Surprise \# = 8,110.

AMS Method

- Works for all moments; gives an unbiased estimate.
- We'll just concentrate on $2^{\text {nd }}$ moment.
- Based on calculation of many random variables X.
- Each requires a count in main memory, so number is limited.

One Random Variable

- Assume stream has length n.
- Pick a random time to start, so that any time is equally likely.
- Let the chosen time have element a in the stream.
- $X=n^{*}$ ((twice the number of a 's in the stream starting at the chosen time) - 1).
- Note: store n once, count of a 's for each X.

Expected Value of X

- $2^{\text {nd }}$ moment is $\sum_{a}\left(m_{a}\right)^{2}$.
- $\mathrm{E}(X)=(1 / n)\left(\Sigma_{\text {all times } t} n^{*}\right.$ (twice the number of times the stream element at time t appears from that time on) -1).
$=\sum_{a}(1 / n)(n)\left(1+3+5+\ldots+2 m_{a}-1\right)$.
$=\left\{\Sigma_{a}\left(m_{a}\right)^{2}\right.$.

Group times
by the value

Time when the first a is seen

Problem: Streams Never End

- We assumed there was a number n, the number of positions in the stream.
- But real streams go on forever, so n changes; it is the number of inputs seen so far.

Fixups

The variables X have n as a factor - keep n separately; just hold the count in X. Suppose we can only store k counts. We cannot have one random variable X for each start-time, and must throw out some starttimes as we read the stream.

- Objective: each starting time t is selected with probability k / n.

Solution to (2)

- Choose the first k times for k variables.
- When the $n^{\text {th }}$ element arrives ($n>k$), choose it with probability k / n.
- If you choose it, throw one of the previously stored variables out, with equal probability.
- Probability of each of the first n-1 positions being chosen:
$(n-k) / n * k /(n-1)+k / n * k /(n-1) *(k-1) / k=k / n$
n-th position not chosen

Previously chosen

n-th position
Previously chosen

